MuscuPassion - Le Forum de musculation depuis 2007

Retrouvez toute l'information des passionnés de muscu sur un forum libre. Partage des programmes, conseils entre les membres et convivialité.
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le deal à ne pas rater :
Display 24 boosters Star Wars Unlimited – Crépuscule de la ...
Voir le deal

Partagez
 

 Hormonal and Molecular Responses to Exercise Differ by Age

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
thejpman

thejpman

Nombre de messages : 7374
Pts Actifs/Pertinence : 14877
Réputation : 105
Date d'inscription : 15/04/2009

Hormonal and Molecular Responses to Exercise Differ by Age  Empty
MessageSujet: Hormonal and Molecular Responses to Exercise Differ by Age    Hormonal and Molecular Responses to Exercise Differ by Age  EmptySam 29 Jan - 22:05

Hormonal and Molecular Responses to Exercise Differ by Age

Newswise — Differences in muscle responses to exercise in older versus younger men reflect differences on the hormonal, molecular, and gene-expression level, reports a study in the January issue of The Journal of Strength and Conditioning Research, official research journal of the National Strength and Conditioning Association. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health, a leading provider of information and business intelligence for students, professionals, and institutions in medicine, nursing, allied health, and pharmacy.

The differences include genetic up-regulation of a key enzyme related to muscle breakdown in older men. The results help in understanding the "molecular control points" for aging-related muscle atrophy—and may lead to new approaches to mitigating the adverse effects of muscle wasting in older adults. The senior author was Chad M. Kerskick, PhD, CSCS, ATC, NSCA-CPT, of University of Oklahoma, Norman.

Older Men Show Different Responses to Resistance Exercise
The researchers compared responses to resistance exercise (weightlifting) in a group of older and younger men—average ages 21 and 68 years. Before and after the men performed a series of exercises (squat, leg press, and leg extension exercises), blood samples were obtained to measure key hormones involved in muscle responses to exercise.

In addition, samples of muscle tissue (biopsies) were obtained to measure gene expression of two specific enzymes—called atrogin-1 and MuRF-1—involved with the process of skeletal muscle breakdown. Recent studies have suggested that these enzymes reflect age-related differences in muscle metabolism and muscle response to exercise.

As expected, the younger men had higher levels of the hormones cortisol and insulin-like growth factor-1 (IGF-1), before and after exercise. In both age groups, cortisol levels increased significantly five minutes after exercise. "Cortisol increases when the body is stressed and speeds up muscle breakdown whereas IGF-1 increases are associated with increased growth of cells and tissues in the human body," Dr. Kerskick explains.

In addition, 24 hours after exercise, the level of IGF-1 had increased in older men. Recent studies have suggested that IGF-1 may reduce degradation of skeletal muscle protein.

Before exercise, the older men had higher expression of the MuRF-1 gene, which has been linked to age-related muscle atrophy (wasting). There was no age-related difference in expression of atrogin-1. Changes in MuRF-1 and atrogin-1 after exercise did not differ significantly between the younger and older men. However, men with higher expression of MuRF-1 had lower levels of IGF-1.

Muscle mass and strength decrease with aging, which is thought to be related to reductions in the levels of anabolic hormones and growth factors. Muscle growth response to exercise (hypertrophy) is also decreased with aging. Recent studies have tried to identify the molecular-level changes in muscle protein degradation contributing to these aging-related differences in exercise response.

The new results help to clarify some of the differences between younger and older muscle. The increased expression of MuRF-1 in older men could be a precursor to muscle atrophy, or may possibly represent an adaptive change to help maintain muscle mass.

In addition to advancing scientific understanding of the effects of aging, the results may have practical applications—if they can inform the development of exercise regimens to maximize muscle response to exercise in older people. Dr. Kerskick and co-authors write, "Additional research into the molecular control points for muscle atrophy is important and can help elucidate modifications to resistance exercise training to optimize results and ultimately helping fitness professionals and clinicians better understand muscle physiology with exercise and advancing age."

About The Journal of Strength and Conditioning Research
The editorial mission of The Journal of Strength and Conditioning Research (JSCR) is to advance the knowledge about strength and conditioning through research. A unique aspect of this journal is that it includes recommendations for the practical use of research findings. While the journal name identifies strength and conditioning as separate entities, strength is considered a part of conditioning. The journal wishes to promote the publication of peer-reviewed manuscripts which add to our understanding of conditioning and sport through applied exercise science. The JSCR is the official research journal of the National Strength and Conditioning Association.

About the National Strength and Conditioning Association
The National Strength and Conditioning Association (NSCA) is an international nonprofit educational association founded in 1978 serving over 33,000 members worldwide. The NSCA develops and presents the most advanced information regarding strength training and conditioning practices and injury prevention. Central to its mission, the NSCA bridges the gap between the scientist in the laboratory and the practitioner in the field. By working to find practical applications for new research findings in the strength and conditioning field, the Association fosters the development of strength training and conditioning as a discipline and as a profession.

About Lippincott Williams & Wilkins
Lippincott Williams & Wilkins (LWW) is a leading international publisher for healthcare professionals and students with nearly 300 periodicals and 1,500 books in more than 100 disciplines publishing under the LWW brand, as well as content-based sites and online corporate and customer services.

LWW is part of Wolters Kluwer Health, a leading provider of information and business intelligence for students, professionals and institutions in medicine, nursing, allied health and pharmacy. Major brands include traditional publishers of medical and drug reference tools, journals, and textbooks, such as Lippincott Williams & Wilkins and ; and electronic information providers, such as Ovid®, UpToDate®, Medi-Span®, Facts & Comparisons®, and ProVation® Medical.
Revenir en haut Aller en bas
MetzgerMeister

MetzgerMeister

Nombre de messages : 4159
Pts Actifs/Pertinence : 6012
Réputation : 87
Date d'inscription : 06/03/2009
Age : 35
Localisation : Belgique, Liège

Hormonal and Molecular Responses to Exercise Differ by Age  Empty
MessageSujet: Re: Hormonal and Molecular Responses to Exercise Differ by Age    Hormonal and Molecular Responses to Exercise Differ by Age  EmptySam 29 Jan - 22:52

Revenir en haut Aller en bas
thejpman

thejpman

Nombre de messages : 7374
Pts Actifs/Pertinence : 14877
Réputation : 105
Date d'inscription : 15/04/2009

Hormonal and Molecular Responses to Exercise Differ by Age  Empty
MessageSujet: Re: Hormonal and Molecular Responses to Exercise Differ by Age    Hormonal and Molecular Responses to Exercise Differ by Age  EmptySam 29 Jan - 23:01

Revenir en haut Aller en bas
MetzgerMeister

MetzgerMeister

Nombre de messages : 4159
Pts Actifs/Pertinence : 6012
Réputation : 87
Date d'inscription : 06/03/2009
Age : 35
Localisation : Belgique, Liège

Hormonal and Molecular Responses to Exercise Differ by Age  Empty
MessageSujet: Re: Hormonal and Molecular Responses to Exercise Differ by Age    Hormonal and Molecular Responses to Exercise Differ by Age  EmptyDim 30 Jan - 1:34

Non mais vas y fais toi plaisir lol!
Revenir en haut Aller en bas
Contenu sponsorisé




Hormonal and Molecular Responses to Exercise Differ by Age  Empty
MessageSujet: Re: Hormonal and Molecular Responses to Exercise Differ by Age    Hormonal and Molecular Responses to Exercise Differ by Age  Empty

Revenir en haut Aller en bas
 

Hormonal and Molecular Responses to Exercise Differ by Age

Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
MuscuPassion - Le Forum de musculation depuis 2007 :: ENTRAINEMENT ,NUTRITION ET SUPPLEMENTATION :: ENTRAINEMENT-
Booster testosterone Créer un forum | ©phpBB | Forum gratuit d'entraide | Signaler un abus | Forum gratuit
<